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1. Introduction

This report considers the problem of multi-target localization using transient signals from a

single-sensor as well as multi-sensor point of view. Here itis assumed that target identification is

not possible, and therefore, no association between measurements and targets are available.

Furthermore, the number of targets in the surveillance region is unknown. Additionally, due to

the limited range of the sensors, missed detections can occur and the presence of clutter can

induce false alarms. An example of such a scenario is shooterlocalization using a network of

acoustic gunfire detection systems (GDSs) (1). The individual GDSs composed of a passive

array of microphones are able to localize a gunfire event by measuring the direction of arrival for

both the acoustic wave generated by the muzzle blast and the shockwave generated by the

supersonic bullet (2–5). Due to echo, reverberation, and the dissipative nature ofthe acoustic

signal, missed detections and false alarms are prevalent inacoustic source localization.

Furthermore, due to the transient nature of the event, continuous observations are not available

and recursive Bayesian tracking schemes cannot be employed.

Conventional multi-target tracking (MTT) approaches likeMultiple Hypothesis Tracking

(MHT) (6, 7) or the Joint Probability Data Association (JPDA) filter (8, 9), which address the

data-association problem, either are too computationallydemanding or cannot be applied to the

transient event localization problem since these approaches require persistent measurement

signals and a fixed number of targets. In MHT, all possible combinations of tracks and data

associations are exhaustively evaluated; therefore, it isan impractical scheme since the number of

mappings between data and targets will grow exponentially with the number of targets (10, 11).

Though more efficient than MHT, JPDA methods are not optimal since the detection is performed

separately from tracking and cannot initiate tracks at low signal-to-clutter ratios (12). A

multi-target extension of the simultaneous localization and mapping (SLAM) problem for

streaming data is presented by Garcia-Fernandez et al. (13). The multi-target simultaneous

localization and mapping (MSLAM) scheme is based on the parallel partition particle filter and it

outperforms the well-known FastSLAM (14) when there are multiple targets in the surveillance

area. Jensfelt and Kristensen (15) discuss an extension of the MHT, known as the

multi-hypothesis localization (MHL), for mobile robot localization. The MHL uses a

multi-hypothesis Kalman filter along with a probabilistic formulation of hypothesis correctness to

generate and track Gaussian hypotheses. However, almost all of the MTT techniques are

recursive algorithms that require persistent observations and are futile in dealing with transient
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signals.

A finite point process approach known as the probability hypothesis density (PHD) filter,

introduced by Mahler (16), allows a more tractable implementation of multi-target tracking

approaches since it only propagates the first-order moment of the multi-target density. Moreover,

the PHD filter is able to handle a time-varying number of targets, missed detections, and false

alarms. Though the track labeling problem is not consideredin the PHD filter, a track labeling

method combined with the PHD approach, is proposed by Lin et al. (17) for multi-target tracking.

Since the implementation of an exact PHD filter is intractable, a sequential Monte Carlo (SMC)

or particle filtering approach (18) and the Gaussian sum filtering scheme (19) have been devised

to approximate the PHD filter. Convergence properties for the particle PHD filter and Gaussian

mixture PHD filter are presented in references (20) and (21), respectively. An SMC

implementation of a finite set statistical filter for the localization of an unknown number of

speakers in a multipath environment using time difference of arrival (TDOA) measurements has

also been proposed (18, 22–24). Similar to traditional MTT algorithms, the PHD filter is a

recursive Bayesian approach, which also requires persistent observations for track update. A

finite point process approach to maximum likelihood based multi-target localization of an

unknown number of targets from transient signals has not been considered yet.

Traditionally, multi-target localization involves the maximum likelihood based approach, where

the selected model yields the maximum likelihood of observing the given data across a possible

number of targets and all possible target-data associations. As the number of sensors increases,

the possible combination of target-data associations dramatically increases, and the problem often

becomes intractable. Development of a multi-target detection and localization scheme based on a

probabilistic framework known as modeling field theory (MFT) is presented by Deming and

Perlovsky (25). Though the computational complexity of a MFT-based approach scales linearly

with the size of the problem, it involves an iterative schemesimilar to the expectation

maximization (EM) and an ad-hoc likelihood ratio test is needed to prune the number of targets.

An iterative maximum likelihood optimization technique based on a modified deterministic

annealing EM (MDAEM) algorithm for multi-target localization and velocity estimation using

TDOAs is given by Carevic (26). Since the MDAEM algorithm is executed for an assumed

number of targets, Carevic (27) provides a systematic approach for determining which of the

target models estimated by the MDAEM algorithm are related to the true targets. Both the

MFT-based approach and the MDAEM algorithm require that theassumed number of targets is

greater than or equal to the true number of targets. Also, themeasurements are only assumed to

contain clutter/false alarms and the problem of missed detection is not considered.
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For the multi-target localization problem considered here, we use the frequentist counterpart to

the Bayesian filtering approach, i.e., the maximum likelihood algorithm. The localization

problem is formulated in two dimensions and the measurements considered here are the range and

the bearing to the targets. Each sensor acquires several range and bearing measurement pairs and

the proposed algorithm estimates the number of targets and their corresponding locations based

on the erroneous measurements. The number of targets is certainly different from the number of

measurements due to clutter and missed detection. The proposed approach is a twofold scheme

that includes an EM algorithm to estimate the target locations for a given number of targets and

an information theoretic algorithm to select the target model, i.e., number of targets and their

locations. The main advantage of the proposed scheme is thatit scales linearly with the size of

the problem and avoids the curse of dimensionality associated with the traditional MHT-based

multi-target localization scheme. For example, if there areN targets,S sensors, andm

measurements per sensor, the computational complexity forthe proposed scheme is in the order

of O (NSm) while the computational complexity for the traditional scheme is in the order of

O
(
NSm

)
. Unlike the methods used by Deming and Perlovsky (25) and Carevic (26), the

proposed approach accounts for probability of detection and missed detection along with clutter

and false alarms.

The structure of this report is as follows: formulation of multi-target localization problem and

the corresponding solution for the single-sensor scenarioare presented in sections 2, and 3,

respectively. A numerical example demonstrating the single-sensor algorithm is presented in

section 4. Formulation of multi-target localization problem and the corresponding solution for

the multi-sensor scenario is presented in sections 5, and 6,respectively. Numerical simulation

demonstrating the multi-sensor algorithm are presented insection 7. Section 8 presents the

results obtained from implementing the proposed algorithmon experimental data. Finally,

Section 9 concludes the report and discusses the current research challenges.

2. Problem Formulation

Consider a two-dimensional (2-D) scenario where there areN targets located inR2. The target

locations are denoted as

(T1, T2, . . . , TN) =

([
Tx1

Ty1

]
,

[
Tx2

Ty2

]
, . . . ,

[
TxN

TyN

])
. (1)

Due to clutter and miss detection, the number of targets and the target location set that may
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induce a measurement are jointly modeled as a finite point process known as the Poisson Point

Process (PPP) (28). A realization of this PPP,Ξ, is denotes as

ξ =

(
m,

{[
tx1

ty1

]
,

[
tx2

ty2

]
, . . . ,

[
txm

tym

]})
= (m, {t1, t2, . . . , tm}) . (2)

The points in the PPP, i.e.,t, occur in a state spaceS = R
2 and the realizations of the PPP is

defined in a bounded subsetR ⊂ S. It is assumed thatT = (T1, T2, . . . , TN ) ∈ R. In a PPP,

the pointsti are not necessarily distinct and their order is irrelevant.The PPP is fully

parameterized by the intensity function:

λ(t) =
N∑

i=1

pD(t) δ(t− Ti), (3)

whereδ(·) is the Dirac delta function, andpD(·) represents the probability of detection. The

number of points in the PPP,Ξ, is determined by sampling the discrete Poisson random variable

M with probability mass function (pmf):

pM(m) =

(∫
R
λ(t)dt

)m

m!
exp

{
−

∫

R

λ(t)dt

}
. (4)

Them points,tj ∈ R, j = 1, . . . , m, are defined as i.i.d. samples of a random variableT onR

with probability density function (pdf):

pT(t) =
λ(t)∫

R
λ(t)dt

. (5)

The number of targets and their locations are unknown, but a sensor located at
[
Sx Sy

]T
is able

to observe the range and bearing to the targets. The measurement equation is,∀j = 1, . . . , m,

zj = h(txj
, tyj) +wj ,⇒

[
rj

φj

]
=

[ √
(txj

− Sx)2 + (tyj − Sy)2

arctan((tyj − Sy)/(txj
− Sx))

]
+

[
wrj

wφj

]
. (6)

The noisewj is assumed to be i.i.d. samples of Gaussian, zero mean process with variance

Σw =

[
σ2
r 0

0 σ2
θ

]
. Thus, the likelihood can be written as

l(z|t) = N ( z |h(t),Σw) . (7)
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Let’s assume that the each pointtj in the PPP realizationξ is observed by the sensor and

subsequently, the sensor generates a measurementzj ∈ T ⊂ R
2. Letψ = (m, {z1, . . . , zm}),

thenψ is a realization of a PPP,Ψ,defined on the spaceT , with intensity

ν(z) =

∫

R

l(z|t)λ(t)dt =
N∑

i=1

pD(Ti)N ( z |h(Ti),Σw) + νcl(z), (8)

whereνcl(z) is the clutter intensity. Thus the measured points are modeled as either samples

from one of theN Gaussian densities or from the clutter intensity. Now the localization problem

can be formally defined as follows:

Givenψ = (m, {z1, . . . , zm}), a realization of the PPP,Ψ, and the clutter intensityνcl(z), find

an estimate of the number of targets,N , target locations,T1, T2, . . . , TN , and the

corresponding probability of detection,pD(Ti).

3. Proposed Single-Sensor Solution

The proposed twofold solution to the problem defined in the previous section consist of an EM

algorithm to estimate the target locations for a given modelfor the intensity and a penalized log

likelihood based information criteria to select the appropriate model. Here, the only difference in

the intensity model is the number of Gaussian components in each model and their corresponding

locations. Details of the twofold solution is given next.

3.1 EM Method

Assume the model is known, i.e., the number of targets is given. Given the number of targets,N ,

the intensityν(z |T) is the superposition ofN weighted Gaussian components along with the

clutter intensity:

ν(z |T) =

N∑

i=1

pD(Ti)N ( z |h(Ti), Σw ) + νcl(z |T), (9)

where the parameter vector of thei-th component isTi andT = (T1, T2, . . . , TN ).

3.1.1 E - Step

The natural choice of the “missing data” are the conditionally independent random indiceskj ,

kj ∈ {∅, 1, 2, . . . , N}, that identify which of the Gaussian components generated the
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measurementzj. Herekj = ∅ indicates that the measurement is generated by clutter. Let

zc = {m, (z1, k1), . . . , (zm, km)} (10)

denote the complete data. Fori ∈ {∅, 1, 2, . . . , N}, let

zc(i) = {(zj, kj) : kj = i}. (11)

Let nc(i) ≥ 0 denote the number of indicesj such thatkj = i, and let

ψc(i) = {nc(i), zc(i) } . (12)

It follows from the definition ofkj thatψc(i) is a realization of the PPP whose intensity is

ψc(i) ∼

{
pD(Ti)N ( z |h(Ti), Σw ) , if i ∈ {1, 2, . . . , N};

νcl(z |T), if i = ∅.
(13)

Now only considering the first scenario,i ∈ {1, 2, . . . , N}, the pdf ofψc(i) can be written as

p (ψc(i) |T) = exp

(
−

∫

T

pD(Ti)N ( z |h(Ti), Σw ) dz

) ∏

j:kj=i

pD(Ti)N ( zj |h(Ti), Σw )

(14)

and

p (ψc(∅) |T) = exp

(
−

∫

T

νcl(z |T)dz

) ∏

j:kj=∅

νcl(zj |T) (15)

Since the superposed components are independent, we have

p (zc |T) = p (ψc(∅) |T) p (ψc(1) |T) p (ψc(2) |T) . . . p (ψc(N) |T)

= exp

(
−

∫

T

ν(z |T) dz

) ∏

j:kj 6=∅

pD(Tkj )N
(
zj |h(Tkj), Σw

) ∏

j:kj=∅

νcl(zj |T)

The log likelihood function ofT givenzc is

L (T | zc) = −

∫

T

ν(z |T) dz+
∑

j:kj 6=∅

log pD(Tkj ) +
∑

j:kj 6=∅

log N
(
zj |h(Tkj), Σw

)

+
∑

j:kj=∅

log νcl(zj |T)
(16)
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Note that the conditional pdf of the missing data,(k1, . . . , km), givenT andz can be written as

p (k1, . . . , km | z,T) =
p (zc |T)

p (z |T)

=
∏

j:kj 6=∅

pD(Tkj )N
(
zj |h(Tkj ), Σw

)

ν(zj |T)

∏

j:kj=∅

νcl(zj |T)

ν(zj |T)

Invoking the Poisson Gambit,p (k1, . . . , km | z,T) can be written as

p (k1, . . . , km | z,T) = p (k1 | z,T) p (k2 | z,T) . . . p (km | z,T) (17)

where the individual pdfs can be written as

p (kj | z,T) =





pD(Tkj
)N( zj |h(Tkj

),Σw )
ν(zj |T)

, if kj 6= ∅;
νcl(zj |T)

ν(zj |T)
, else.

(18)

Let n = 0, 1, . . . denote the EM iteration index, and let the current feasible value ofT be

T(n) =
(
T

(n)
1 , . . . ,T

(n)
N

)
. Now the EM auxiliary function is the conditional expectation

Q
(
T
∣∣T(n)

)
= E

k1,...,km,

∣∣
z,T(n)

[
L (T | zc)

∣∣ z,T(n)
]

=
N∑

k1=∅

· · ·
N∑

km=∅

L (T | zc)
∏

j:kj 6=∅

pD(Tkj )N
(
zj |h(Tkj), Σw

)

ν(zj |T)

∏

j:kj=∅

νcl(zj |T)

ν(zj |T)

(19)

Substituting the log likelihood yields

Q
(
T |T(n)

)
= −

∫

T

ν(z |T) dz+
m∑

j=1

N∑

k1=1

· · ·

· · ·
N∑

km=1

log N
(
zj |h(Tkj), Σw

) N
(
zj |h

(
T

(n)
kj

)
, Σw

)

ν (zj |T(n))

(20)

7



Note that

N∑

k1,··· ,kj−1,kj+1,··· ,km=1

log N
(
zj |h(Tkj), Σw

) N
(
zj |h

(
T

(n)
kj

)
, Σw

)

ν (zj |T(n))
=

log N
(
zj |h(Tkj), Σw

) N
(
zj |h

(
T

(n)
kj

)
, Σw

)

ν (zj |T(n))

(21)

Thus,Q
(
T |T(n)

)
can be written as

Q
(
T |T(n)

)
=

N∑

i=1

Qi

(
Ti |T

(n)
)

(22)

where

Qi

(
Ti |T

(n)
)
=−

∫

T

N ( z |h(Ti), Σw ) dz

+

m∑

j=1

N
(
zj |h

(
T

(n)
i

)
, Σw

)

ν (zj |T(n))
log N ( zj |h(Ti), Σw )

(23)

This completes the E-step.

3.1.2 M - Step

The M-step maximizesQ
(
T |T(n)

)
over all feasibleT, i.e.,

T(n+1) = argmax
T

Q
(
T |T(n)

)
. (24)

Assuming there is no functional relation betweenTi andTj for i 6= j, the required M-step

maximum is found by maximizing the expressionsQi

(
Ti |T(n)

)
separately. Let

T
(n+1)
i = argmax

Ti

Qi

(
Ti |T

(n)
)
, 1 ≤ i ≤ N. (25)

Before we further proceed, noteN ( zj |h(Ti), Σw ) can be written as

N ( zj |h(Ti), Σw ) =
1√

det(2πΣw)
exp

[
−
1

2
(zj − h(Ti))

T Σ−1
w

(zj − h(Ti))

]
. (26)
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Thus

logN ( zj |h(Ti), Σw ) = − log
√
det(2πΣw)−

1

2
(zj − h(Ti))

T Σ−1
w

(zj − h(Ti)) . (27)

Define the weightωi

(
zj |T(n),Σw

)
as

ωi

(
zj |T

(n),Σw

)
=

N
(
zj |h

(
T

(n)
i

)
, Σw

)

ν (zj |T(n))
. (28)

The weightωi

(
zj |T(n),Σw

)
is the probability that the pointzj is generated by thei-th

component given the current estimatesT(n). Now equation 25 can be rewritten as

T
(n+1)
i = argmax

Ti

−

∫

T

N ( z |h(Ti), Σw ) dz+

m∑

j=1

ωi

(
zj |T

(n),Σw

)
log N ( zj |h(Ti), Σw )

(29)

ThenT(n+1)
i satisfies the necessary condition:

m∑

j=1

ωi

(
zj |T

(n),Σw

)
Σ−1

w
[zj − h(Ti)]∇Ti

h (Ti) =

∫

T

N ( z |h(Ti), Σw ) Σ−1
w

[z− h(Ti)]∇Ti
h (Ti) dz

(30)

The above condition may be simplified to

m∑

j=1

ωi

(
zj |T

(n),Σw

)
[zj − h(Ti)] =

∫

T

N ( z |h(Ti), Σw ) [z− h(Ti)] dz (31)

Based on the assumptions
∫
T N ( z |h(Ti), Σw ) z dz ≈ h(Ti) and∫

T N ( z |h(Ti), Σw ) dz ≈ 1, the EM updatesT(n+1)
i is calculated as the solution to the equation

h
(
Tn+1

i

)
≈

m∑
j=1

ωi

(
zj |T

(n),Σw

)
zj

m∑
j=1

ωi (zj |T(n),Σw)
. (32)
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Define

yi =

[
yri

yφi

]
=

m∑
j=1

ωi

(
zj |T(n),Σw

)
zj

m∑
j=1

ωi (zj |T(n),Σw)
. (33)

NowT
(n+1)
i is the solution to the nonlinear equation



√

(T
(n+1)
xi − Sx)2 + (T

(n+1)
yi − Sy)2

arctan((T
(n+1)
xi − Sx)/(T

(n+1)
yi − Sy))


 =

[
yri

yφi

]
. (34)

Thus we have

T (n+1)
xi

=





(
y2ri

1+tan2(yφi)

)1/2

+ Sx, if − π
2
≤ yφi

≤ π
2
;

−

(
y2ri

1+tan2(yφi)

)1/2

+ Sx, else,

(35)

and

T (n+1)
yi

= tan (yφi
)
(
T (n+1)
xi

− Sx

)
+ Sy. (36)

Given the likelihood function is bounded above, the EM iteration nearly always converges to a

local maximum of the likelihood function. However, the convergence rate is only linear and the

first few iterations are commonly observed to result in significant improvements in the likelihood

function.

3.2 Information Criteria for Model Selection

The previous subsection provides an approach to estimate the target locations given the number of

targets. Presented in this section is an information theoretic approach to select the appropriate

model, i.e., the number of targets or the number of Gaussian components. Model selection can

be approached in terms of the Kullback-Leibler informationof the true model with respect to the

fitted model. Letν(z |T, N) be the true intensity and letν(z | T̂, N̂) denote one of the fitted
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models, i.e.,

ν(z |T, N) =

N∑

i=1

N ( z |h(Ti), Σw ) (37)

ν(z | T̂, N̂) =

N̂∑

i=1

N
(
z |h(T̂i), Σw

)
. (38)

Thus, the true distribution ofz can be written as

p(z) =
1

N

N∑

i=1

N ( z |h(Ti), Σw ) , (39)

and its approximation

p̂(z) =
1

N̂

N̂∑

i=1

N
(
z |h(T̂i), Σw

)
. (40)

Now the Kullback-Leibler information ofp(z) with respect tôp(z) is

DKL(p|p̂) =

∫

T

p(z) log p(z) dz−

∫

T

p(z) log p̂(z) dz, (41)

which is a measure of the divergence ofp(z) relative top̂(z). The aim is make the

Kullback-Leibler information small. As the first term on theright-hand side of equation 41 does

not depend on the model, only the second term is relevant. It can be expressed as

η({z1, . . . , zm} |P ) =

∫

T

log p̂(z) p(z)dz, (42)

=

∫

T

log p̂(z) dP (z), (43)

whereP denotes the true distribution and{z1, . . . , zm} is the observed data. Now the sample

estimate ofη({z1, . . . , zm} |P ) is given by

η({z1, . . . , zm} |P̂ ) =
1

m

m∑

j=1

log p̂(zj) (44)

=
1

m
logL

(
{z1, . . . , zm}

∣∣ T̂, N̂
)
, (45)

whereL(·) indicate the likelihood function and equation 45 follows from the assumption that the

observations are independent. The bias ofη({z1, . . . , zm} |P̂ ) as an estimator of
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η({z1, . . . , zm} |P ) is the functional

b(P ) = EP

[
η({z1, . . . , zm} |P̂ )− η({z1, . . . , zm} |P )

]
, (46)

whereEP denotes expectation with respect to the true distributionP . Thus, an information

criterion for model section can be based on the bias-corrected log likelihood given by

logL
(
{z1, . . . , zm}

∣∣ T̂, N̂
)
− b(P ), (47)

using an appropriate estimate of the bias term. The intent isto select the model that would

maximize the above quantity and thus minimizes the Kullback-Leibler information. In the

literature, the information criteria formed are generallyexpressed in terms of twice the negative

value of the difference given above, so they are of the form

−2 logL
(
{z1, . . . , zm}

∣∣ T̂, N̂
)
+ 2b(P ), (48)

The intent therefore is to choose a model to minimize the criterion equation 48.

3.2.1 Akaike’s Information Criterion (AIC)

Akaike (29) showed thatb(P ) is asymptotically equal tod, whered is equal to the total number of

parameters in the model. Thus from equation 48, AIC selects the model that minimizes

−2 logL
(
{z1, . . . , zm}

∣∣ T̂, N̂
)
+ 2d. (49)

For the 2-D localization problem under consideration, the above criterion can be rewritten as

−2 logL
(
{z1, . . . , zm}

∣∣ T̂, N̂
)
+ 4N̂. (50)

Therefore, the present approach would select several different candidates for̂N and solve the

corresponding localization problem using the EM algorithm. Afterwards, the AIC associated

with each model is calculated and the model corresponding tothe lowest AIC is selected as the

estimated model. A summary of the proposed algorithm is presented in table 1.
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Table 1. Summary of algorithm.

Given data: {z1, . . . , zm}

Fit the intensity: ν(z |T, N) =
N∑
i=1

N ( z |h(Ti), Σw )

Estimate the parameters:N and{T1, . . . , TN}

• Select the candidate models: N̂1, . . . , N̂K

• FORk = 1 : K

– FORi = 1 : N̂k

∗ Initialize T
(0)
i (k) ∈ T

– END FOR

– FOREM iterationn = 0, 1, . . . until converges

∗ FORi = 1 : N̂k

· UpdateT (n+1)
xi (k) using equation 35

· UpdateT (n+1)
yi (k) using equation 36

∗ END FOR

– END FOR

– Calculate the maximum likelihood:Lk = exp {−N̂k}
m∏
j=1

ν(zj | T̂(k), N̂k)

– CalculateAIC(k) = −2 logLk + 4N̂k

• END FOR

• Select the indexk corresponding to the minimum AIC:

 = min
k

{AIC(1), . . . , AIC(k), . . . , AIC(K)}

• Parameter estimates arêN andT̂()
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4. Numerical Example

Consider a scenario, where there are four targets (N = 4) located at

T =

([
298

−5

]
,

[
250

7

]
,

[
267

−17

]
,

[
310

18

])
.

Following the setup presented in section 2., the measurement intensity is given as

ν(z |T) =

4∑

i=1

Ii N ( z |h(Ti), Σw ) + νcl(z),

where the known measurement covariance matrix isΣw =

[
9 0

0 5× 10−3

]
, i.e., the range

standard deviation amounts to3 m and the bearing standard deviation to4o. TheIi’s are given as

I1:4 = {0.5732, 1.7962, 1.2172, 0.4135}

and the clutter intensity is given as

νcl(z) = 0.0122N

(
z |h

([
281.25

0.75

])
,

[
900 0

0 0.4874

])
.

The sensor location is selected asSx = 10 andSy = 0. In order to evaluate the performance of

the algorithm, 200 MC runs were conducted. For each run, the number of measurements are

determined by sampling from the Poisson distribution:

pM(m) ≈
(4)m

m!
exp {−4} .

Them measurements are obtained from the mixture pdf:

1

4.0122

[
4∑

i=1

Ii N ( z |h(Ti), Σw ) + 0.0122N

(
z |h

([
281.25

0.75

])
,

[
900 0

0 0.4874

])]
(51)

with mixing probabilities{0.1429, 0.4477, 0.3034, 0.1031, 0.0030}. Here we use the optimal

subpattern assignment (OSPA) metric to assess the performance of the localization

algorithm (30). To be specific, we use the OSPA metric of order 1 with cut-offvalue 100.
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Given in figure 1 is the histogram obtained from the MC runs forthe number of measurements

and estimated number of targets. Note that the histogram forthe number of measurements

clearly resembles that of a Poisson pdf while the histogram for the estimated number of targets

clearly favors 4.
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m

(a) Number of measurements
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20
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80

100

120

140

N̂

(b) Estimated number of targets

Figure 1. Histogram for number of measurements and estimated number of targets.

Figure 2 contains the OSPA metric obtained for each MC runs. Note that the OSPA metric

around the 100 mark indicates the MC runs with a cardinality error of one while the OSPA metric

around the 200 mark indicates the MC runs with a cardinality error of two. Note that the

majority of the metrics are well below 25 indicating no cardinality error and accurate localization.
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)

Figure 2. OSPA metric for each MC runs.

Given in figure 3 is the localization results obtained for oneof the MC trials. For the numerical
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results presented in figure 3,m = 7 and the measurement are

z =

([
295.4439

−7.4361

]
,

[
248.0845

7.9683

]
,

[
266.9659

−19.7274

]
,

[
308.8356

17.9654

]
,

[
301.3977

−2.3297

]
,

[
251.7503

6.9274

]
,

[
251.5474

3.2172

])
.
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Figure 3. Single-sensor simulation scenario.

For all MC runs, five different models are selected and their corresponding AIC are given in

table 2.

Table 2. Models and AIC.

AIC

N̂1 = 2 N̂1 = 3 N̂1 = 4 N̂1 = 5 N̂1 = 6

26.7675 24.7321 24.3130 27.1980 31.8099

Thus, the parameter estimates areN̂ = 4 and

T̂ =

([
298.4321

−4.9096

]
,

[
250.4694

6.0468

]
,

[
266.9659

−19.7274

]
,

[
308.8356

17.9654

])
.
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5. Multi-Sensor Problem Formulation

This section considers a multi-sensor scenario where thereare ‘s’ sensors located at points

(S1, S2, . . . , Ss) =

([
Sx1

Sy1

]
,

[
Sx2

Sy2

]
, . . . ,

[
Sxs

Sys

])
. (52)

The sensor locations are known a priori. Following the problem formulation given in section 2.,

the number of measurements and the measurement set are jointly modeled as a PPP. Thus,

consider thes different realizations ofs PPPs,Ψ(1),Ψ(2), . . . ,Ψ(s):

ψ(1) =
(
m1,

{
z
(1)
1 , z

(1)
2 , . . . , z(1)m1

})
,

...
...

ψ(ℓ) =
(
mℓ,

{
z
(ℓ)
1 , z

(ℓ)
2 , . . . , z

(ℓ)
mℓ

})
,

...
...

ψ(s) =
(
ms,

{
z
(s)
1 , z

(s)
2 , . . . , z(s)ms

})
.

For ℓ = 1, . . . , s, theℓ-th realization, i.e.,ψ(ℓ), corresponds to the number of measurements and

the measurement set obtained by theℓ-th sensor. The measurement noise is assumed to be

zero-mean Gaussian with known varianceΣw. Now following the similar formulation presented

for the single-sensor scenario, theℓ-th PPP is modeled via the intensity function

ν(ℓ)(z) =

N∑

i=1

pD(Ti)N (z|h (Ti, Sℓ ) ,Σw) + ν
(ℓ)
cl (z).

Letψ1:s denotes the set of all measurements, i.e.,

ψ1:s =

(
s∑

ℓ=1

mℓ,
{
z
(1)
1 , . . . , z(1)m1

, . . . , z
(ℓ)
1 , . . . , z

(ℓ)
mℓ
, . . . , z

(s)
1 , . . . , z(s)ms

}
)
.

Since the superposition of two PPPs is also a PPP,ψ1:s can be considered as a PPP with intensity

γ(z) =

s∑

ℓ=1

ν(ℓ)(z) =

s∑

ℓ=1

(
N∑

i=1

pD(Ti)N (z|h (Ti, Sℓ ) ,Σw) + ν
(ℓ)
cl (z)

)
.
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Now p (ψ1:s) can be written as

p (ψ1:s) = exp

{
−

∫

T

γ(z) dz

} s∏

ℓ=1

mℓ∏

j=1

γ(z
(ℓ)
j ). (53)

6. Multi-Sensor Solution

The multi-sensor solution proposed in this section directly follows from the single-sensor solution

presented previously.

6.1 EM Method

Given the number of targets,N , the intensityν(ℓ)(z |T) of theℓ-th sensor is the superposition of

N Gaussian components along with the clutter intensities:

ν(ℓ)(z |T) =

N∑

i=1

pD(Ti)N (z|h (Ti, Sℓ ) ,Σw) + ν
(ℓ)
cl (z). (54)

6.1.1 E - Step

First consider theℓ-th sensor, where there aremℓ measurements. Forj = 1, . . . , mℓ, the natural

choice of the “missing data” for theℓ-th PPP are the conditionally independent random indices

k
(ℓ)
j , k(ℓ)j ∈ {∅, 1, 2, . . . , N}, that identify which of the Gaussian components, i.e., target,

generated the measurementz
(ℓ)
j . Herekj = ∅ indicates that the measurement is generated by

clutter. Let

z(ℓ)c =
(
mℓ , {(z

(ℓ)
1 , k

(ℓ)
1 ), . . . , (z

(ℓ)
j , k

(ℓ)
j ), . . . , (z(ℓ)mℓ

, k(ℓ)mℓ
)}
)

(55)

denote the complete data. Fori ∈ {∅, 1, 2, . . . , N}, let

z(ℓ)c (i) = {(z(ℓ)j , k
(ℓ)
j ) : k

(ℓ)
j = i}. (56)

Let n(ℓ)
c (i) ≥ 0 denote the number of indicesj such thatk(ℓ)j = i, and let

ψ(ℓ)
c (i) =

(
n(ℓ)
c (i), z(ℓ)c (i)

)
. (57)
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It follows from the definition ofk(ℓ)j thatψ(ℓ)
c (i) is a realization of the PPP whose intensity is

ψ(ℓ)
c (i) ∼

{
pD(Ti)N (z|h (Ti, Sℓ ) ,Σw) , if i ∈ {1, 2, . . . , N};

ν
(ℓ)
cl (z), if i = ∅.

(58)

Now only considering the first scenario,i ∈ {1, 2, . . . , N}, the pdf ofψ(ℓ)
c (i) can be written as

p
(
ψ(ℓ)
c (i) |T

)
=exp

(
−

∫

T

pD(Ti)N (z|h (Ti, Sℓ ) ,Σw) dz

)

∏

j:k
(ℓ)
j

=i

pD(Ti)N
(
z
(ℓ)
j |h (Ti, Sℓ ) ,Σw

) (59)

and

p
(
ψ(ℓ)
c (∅) |T

)
= exp

(
−

∫

T

ν
(ℓ)
cl (z) dz

) ∏

j:k
(ℓ)
j =∅

ν
(ℓ)
cl (z

(ℓ)
j ) (60)

Since the superposed components are independent, we have

p
(
z(ℓ)c |T

)
= p

(
ψ(ℓ)
c (∅) |T

)
p
(
ψ(ℓ)
c (1) |T

)
p
(
ψ(ℓ)
c (2) |T

)
. . . p

(
ψ(ℓ)
c (N) |T

)

= exp

(
−

∫

T

ν(ℓ)(z |T) dz

) ∏

j:k
(ℓ)
j 6=∅

pD(T
k
(ℓ)
j

)N
(
z
(ℓ)
j |h(T

k
(ℓ)
j

, Sℓ), Σw

) ∏

j:k
(ℓ)
j =∅

ν
(ℓ)
cl (z

(ℓ)
j )

Let

µ(ℓ)
(
z
(ℓ)
j |T

k
(ℓ)
j

)
=





pD(T
k
(ℓ)
j

)N
(
z
(ℓ)
j |h(T

k
(ℓ)
j

, Sℓ), Σw

)
, if k(ℓ)j ∈ {1, 2, . . . , N};

ν
(ℓ)
cl (z

(ℓ)
j ), if k(ℓ)j = ∅.

(61)

Then

p
(
z(ℓ)c |T

)
= exp

(
−

∫

T

ν(ℓ)(z |T) dz

) mℓ∏

j=1

µ(ℓ)
(
z
(ℓ)
j |T

k
(ℓ)
j

)
(62)

The log likelihood function ofT givenz(ℓ)c is

L
(
T | z(ℓ)c

)
= −

∫

T

ν(ℓ)(z |T) dz+

mℓ∑

j=1

log µ(ℓ)
(
z
(ℓ)
j |T

k
(ℓ)
j

)
(63)
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Now note that

p
(
ψ(ℓ) |T

)
= exp

(
−

∫

T

ν(ℓ)(z |T) dz

) mℓ∏

j=1

ν(ℓ)
(
z
(ℓ)
j |T

)
(64)

Thus the conditional pdf of the missing data,
(
k
(ℓ)
1 , . . . , k

(ℓ)
m

)
, can be written as

p
(
k
(ℓ)
1 , . . . , k(ℓ)mℓ

|ψ(ℓ),T
)
=
p
(
z
(ℓ)
c |T

)

p (ψ(ℓ) |T)
=

mℓ∏

j=1

µ(ℓ)
(
z
(ℓ)
j |T

k
(ℓ)
j

)

ν(ℓ)
(
z
(ℓ)
j |T

) (65)

Furthermore, assuming that the sensor measurements conditioned on the target locations are

independent of each other yields

p
(
z(1)c , . . . , z(s)c |T

)
= p

(
z(1)c |T

)
. . . p

(
z(s)c |T

)
(66)

=
s∏

ℓ=1

[
exp

(
−

∫

T

ν(ℓ)(z |T) dz

) mℓ∏

j=1

µ(ℓ)
(
z
(ℓ)
j |T

k
(ℓ)
j

)]
(67)

and

p
(
ψ(1), . . . ,ψ(s) |T

)
= p

(
ψ(1) |T

)
. . . p

(
ψ(s) |T

)
(68)

=
s∏

ℓ=1

[
exp

(
−

∫

T

ν(ℓ)(z |T) dz

) mℓ∏

j=1

ν(ℓ)
(
z
(ℓ)
j |T

)]
(69)

Now the conditional pdf of the missing data for all sensors,
(
k
(1)
1 , . . . , k

(1)
m1 , . . . , k

(s)
1 , . . . , k

(s)
ms

)
,

givenT andψ(1), . . . ,ψ(s) can be written as

p
(
k
(1)
1 , . . . , k(s)ms

|ψ(1), . . . ,ψ(s),T
)
=
p
(
z
(1)
c , . . . , z

(s)
c |T

)

p (ψ(1), . . . ,ψ(s) |T)
(70)

=

s∏

ℓ=1

mℓ∏

j=1

µ(ℓ)
(
z
(ℓ)
j |T

k
(ℓ)
j

)

ν(ℓ)
(
z
(ℓ)
j |T

) (71)

The log likelihood function ofT givenz(1)c , . . . , z
(s)
c is

L
(
T | z(1)c , . . . , z(s)c

)
=

s∑

ℓ=1

[
−

∫

T

ν(ℓ)(z |T) dz+

mℓ∑

j=1

log µ(ℓ)
(
z
(ℓ)
j |T

k
(ℓ)
j

)]
(72)
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Givenγ(z |T) =
s∑

ℓ=1

ν(ℓ)(z |T), the log likelihood function can be rewritten as

L
(
T | z(1)c , . . . , z(s)c

)
= −

∫

T

γ(z |T) dz+

s∑

ℓ=1

mℓ∑

j=1

log µ(ℓ)
(
z
(ℓ)
j |T

k
(ℓ)
j

)
(73)

Let n = 0, 1, . . . denote the EM iteration index, and let the current feasible value ofT be

T(n) =
(
T

(n)
1 , . . . ,T

(n)
N

)
. Now the EM auxiliary function is the conditional expectation

Q
(
T
∣∣T(n)

)
= E

z
(1)
c ,...,z

(s)
c

∣∣ψ(1),...,ψ(s),T(n)

[
L
(
T | z(1)c , . . . , z(s)c

) ∣∣ψ(1), . . . ,ψ(s),T(n)
]

=
N∑

k
(1)
1 =∅

· · ·
N∑

k
(s)
ms=∅

L
(
T | z(1)c , . . . , z(s)c

) s∏

α=1

mα∏

β=1

µ(α)

(
z
(α)
β |T(n)

k
(α)
β

)

ν(α)
(
z
(α)
β |T(n)

)
(74)

Substituting the log likelihood yields

Q
(
T |T(n)

)
= −

∫

T

γ(z |T) dz+

N∑

k
(1)
1 =∅

· · ·
N∑

k
(s)
ms=∅

[
s∑

ℓ=1

mℓ∑

j=1

log µ(ℓ)
(
z
(ℓ)
j |T

k
(ℓ)
j

)] s∏

α=1

mα∏

β=1

µ(α)

(
z
(α)
β |T(n)

k
(α)
β

)

ν(α)
(
z
(α)
β |T(n)

)
(75)

Thus

Q
(
T |T(n)

)
=

s∑

ℓ=1

mℓ∑

j=1

N∑

k
(ℓ)
j =∅

N∑

k
(1)
1 ,··· ,k

(ℓ)
j−1,k

(ℓ)
j+1,··· ,k

(s)
ms=∅

log µ(ℓ)
(
z
(ℓ)
j |T

k
(ℓ)
j

)

×
s∏

α=1

mα∏

β=1

µ(α)

(
z
(α)
β |T(n)

k
(α)
β

)

ν(α)
(
z
(α)
β |T(n)

) −

∫

T

γ(z |T) dz

(76)

Note

N∑

k
(1)
1 =∅

· · ·
N∑

k
(s)
ms=∅




s∏

ℓ=1

mℓ∏

j=1

µ(ℓ)
(
z
(ℓ)
j |T

k
(ℓ)
j

)

ν(ℓ)
(
z
(ℓ)
j |T

)


 = 1 (77)
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Thus we have

Q
(
T |T(n)

)
=

s∑

ℓ=1

mℓ∑

j=1

N∑

k
(ℓ)
j =∅

N∑

k
(1)
1 ,··· ,k

(ℓ)
j−1,k

(ℓ)
j+1,··· ,k

(s)
ms=∅

log µ(ℓ)
(
z
(ℓ)
j |T

k
(ℓ)
j

)

×

µ(ℓ)

(
z
(ℓ)
j |T(n)

k
(ℓ)
j

)

ν(ℓ)
(
z
(ℓ)
j |T(n)

) −

∫

T

γ(z |T) dz

(78)

Note that

N∑

k
(1)
1 ,··· ,k

(ℓ)
j−1,k

(ℓ)
j+1,··· ,k

(s)
ms=∅

log µ(ℓ)
(
z
(ℓ)
j |T

k
(ℓ)
j

) µ(ℓ)

(
z
(ℓ)
j |T(n)

k
(ℓ)
j

)

ν(ℓ)
(
z
(ℓ)
j |T(n)

) =

log µ(ℓ)
(
z
(ℓ)
j |T

k
(ℓ)
j

) µ(ℓ)

(
z
(ℓ)
j |T(n)

k
(ℓ)
j

)

ν(ℓ)
(
z
(ℓ)
j |T(n)

)

(79)

Thus,Q
(
T |T(n)

)
can be written as

Q
(
T |T(n)

)
=

N∑

i=∅

s∑

ℓ=1

mℓ∑

j=1

log µ(ℓ)
(
z
(ℓ)
j |Ti

) µ(ℓ)
(
z
(ℓ)
j |T(n)

i

)

ν(ℓ)
(
z
(ℓ)
j |T(n)

) −

∫

T

γ(z |T) dz (80)

Now substituting equation 61,Q
(
T |T(n)

)
can be rewritten as

Q
(
T |T(n)

)
= −

∫

T

γ(z |T) dz+
s∑

ℓ=1

mℓ∑

j=1

log ν
(ℓ)
cl (z

(ℓ)
j )

ν
(ℓ)
cl (z

(ℓ)
j )

ν(ℓ)
(
z
(ℓ)
j |T(n)

)+

N∑

i=1

s∑

ℓ=1

mℓ∑

j=1

log pD(Ti)N
(
z
(ℓ)
j |h(Ti, Sℓ), Σw

) pD(T
(n)
i )N

(
z
(ℓ)
j |h(T(n)

i , Sℓ), Σw

)

ν(ℓ)
(
z
(ℓ)
j |T(n)

)

(81)

Recall that

γ(z |T) =

s∑

ℓ=1

ν(ℓ)(z |T) =

s∑

ℓ=1

(
N∑

i=1

pD(Ti)N (z|h (Ti, Sℓ ) ,Σw) + ν
(ℓ)
cl (z)

)
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Thus,Q
(
T |T(n)

)
can be written as

Q
(
T |T(n)

)
=

s∑

ℓ=1


 −

∫

T

ν
(ℓ)
cl (z) dz+

mℓ∑

j=1

log ν
(ℓ)
cl (z

(ℓ)
j )

ν
(ℓ)
cl (z

(ℓ)
j )

ν(ℓ)
(
z
(ℓ)
j |T(n)

)


+

N∑

i=1

s∑

ℓ=1

[
mℓ∑

j=1

log pD(Ti)N
(
z
(ℓ)
j |h(Ti, Sℓ), Σw

) pD(T(n)
i )N

(
z
(ℓ)
j |h(T(n)

i , Sℓ), Σw

)

ν(ℓ)
(
z
(ℓ)
j |T(n)

)

−

∫

T

pD(Ti)N (z|h (Ti, Sℓ ) ,Σw) dz

]

(82)

Thus

Q
(
T |T(n)

)
=

N∑

i=1

Qi

(
Ti |T

(n)
)
+Qcl

(
T(n)

)
(83)

where

Qi

(
Ti |T

(n)
)
=

s∑

ℓ=1

[
mℓ∑

j=1

log pD(Ti)N
(
z
(ℓ)
j |h(Ti, Sℓ), Σw

)

×
pD(T

(n)
i )N

(
z
(ℓ)
j |h(T(n)

i , Sℓ), Σw

)

ν(ℓ)
(
z
(ℓ)
j |T(n)

) −

∫

T

pD(Ti)N (z|h (Ti, Sℓ ) ,Σw) dz

] (84)

and

Qcl

(
T(n)

)
=

s∑

ℓ=1


 −

∫

T

ν
(ℓ)
cl (z) dz+

mℓ∑

j=1

log ν
(ℓ)
cl (z

(ℓ)
j )

ν
(ℓ)
cl (z

(ℓ)
j )

ν(ℓ)
(
z
(ℓ)
j |T(n)

)


 (85)

This completes the E-step.

6.1.2 M - Step

The M-step maximizesQ
(
T |T(n)

)
over all feasibleT, i.e.,

T(n+1) = argmax
T

Q
(
T |T(n)

)
. (86)
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Assuming there is no functional relation betweenTi andTj for i 6= j, the required M-step

maximum is found by maximizing the expressionsQi

(
Ti |T(n)

)
separately. Let

T
(n+1)
i = argmax

Ti

Qi

(
Ti |T

(n)
)
, 1 ≤ i ≤ N. (87)

Before we further proceed, note thatN
(
z
(ℓ)
j |h (Ti, Sℓ ) , Σw

)
can be written as

N
(
z
(ℓ)
j |h (Ti, Sℓ ) , Σw

)
=

1√
det(2πΣw)

exp

[
−
1

2

(
z
(ℓ)
j − h ( Ti, Sℓ )

)T

×Σ−1
w

(
z
(ℓ)
j − h ( Ti, Sℓ )

)]
.

Thus

logN
(
z
(ℓ)
j |h (Ti, Sℓ ) , Σw

)
=− log

√
det(2πΣw)

−
1

2

(
z
(ℓ)
j − h (Ti, Sℓ )

)T
Σ−1

w

(
z
(ℓ)
j − h ( Ti, Sℓ )

)
.

Define the weightω(ℓ)
i

(
z
(ℓ)
j |T(n),Σw

)
as

ω
(ℓ)
i

(
z
(ℓ)
j |T(n),Σw

)
=
pD(T

(n)
i )N

(
z
(ℓ)
j |h(T(n)

i , Sℓ), Σw

)

ν(ℓ)
(
z
(ℓ)
j |T(n)

) . (88)

The weightω(ℓ)
i

(
z
(ℓ)
j |T(n),Σw

)
is the probability that the pointz(ℓ)j is generated by thei-th

target given the current estimatesT(n). Now equation 87 can be rewritten as

T
(n+1)
i = argmax

Ti

s∑

ℓ=1

[
mℓ∑

j=1

log N
(
z
(ℓ)
j |h(Ti, Sℓ), Σw

)
ω
(ℓ)
i

(
z
(ℓ)
j |T(n),Σw

)
+

mℓ∑

j=1

log pD(Ti)ω
(ℓ)
i

(
z
(ℓ)
j |T(n),Σw

)
−

∫

T

pD(Ti)N (z|h (Ti, Sℓ ) ,Σw) dz

] (89)

Unlike the single-sensor case, here we do not consider two different scenarios based onpD(Ti).

HerepD(Ti) = Ii are assumed to be scalar quantities that need to be estimatedalong withT.

Here we assume thatpD(Ti) are scalar quantities, indicated asIi, that need to be estimated along
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with Ti. Thus the optimization problem in equation 89 can be rewritten as

T
(n+1)
i = argmax

Ti

s∑

ℓ=1

[
mℓ∑

j=1

log N
(
z
(ℓ)
j |h(Ti, Sℓ), Σw

)
ω
(ℓ)
i

(
z
(ℓ)
j |T(n),Σw

)
+

mℓ∑

j=1

log Ii ω
(ℓ)
i

(
z
(ℓ)
j |T(n),Σw

)
−

∫

T

Ii N (z|h (Ti, Sℓ ) ,Σw) dz

] (90)

I
(n+1)
i = argmax

Ii

s∑

ℓ=1

[
mℓ∑

j=1

log N
(
z
(ℓ)
j |h(Ti, Sℓ), Σw

)
ω
(ℓ)
i

(
z
(ℓ)
j |T(n),Σw

)
+

mℓ∑

j=1

log Ii ω
(ℓ)
i

(
z
(ℓ)
j |T(n),Σw

)
−

∫

T

Ii N (z|h (Ti, Sℓ ) ,Σw) dz

] (91)

From equation 90,T(n+1)
i satisfies the necessary condition:

s∑

ℓ=1

[
mℓ∑

j=1

ω
(ℓ)
i

(
z
(ℓ)
j |T(n),Σw

)
Σ−1

w

[
z
(ℓ)
j − h ( Ti, Sℓ )

]
∇Ti

h (Ti, Sℓ )−

∫

T

IiN (z|h (Ti, Sℓ ) ,Σw)Σ
−1
w

[z− h ( Ti, Sℓ )]∇Ti
h (Ti, Sℓ ) dz

]
= 0

(92)

The above condition can be rewritten as

s∑

ℓ=1

{
Σ−1

w

[
mℓ∑

j=1

ω
(ℓ)
i

(
z
(ℓ)
j |T(n),Σw

) [
z
(ℓ)
j − h (Ti, Sℓ )

]
−

∫

T

Ii N (z|h (Ti, Sℓ ) ,Σw) [z− h ( Ti, Sℓ )] dz

]
∇Ti

h ( Ti, Sℓ )

}
= 0

(93)

Based on the assumption
∫
T N (z|h (Ti, Sℓ ) ,Σw) z dz ≈ h ( Ti, Sℓ ) and∫

T
N ( z |h(Ti), Σw ) dz ≈ 1, the EM updatesT(n+1)

i is calculated as the solution to the equation

s∑

ℓ=1

mℓ∑

j=1

ω
(ℓ)
i

(
z
(ℓ)
j |T(n),Σw

)
z
(ℓ)
j =

s∑

ℓ=1

mℓ∑

j=1

ω
(ℓ)
i

(
z
(ℓ)
j |T(n),Σw

)
h
(
T

(n+1)
i , Sℓ

)
(94)

Due to the nonlinear nature of the above equation, there exist no closed form solution to above

equation. There exist several ways to solve the above equations such as Newton’s root finding

algorithm. On the other hand, one can also solve equation 94 directly using a search method or a

gradient descent method.
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On the other hand,I(n+1)
i satisfies the necessary condition:

s∑

ℓ=1

(
mℓ∑

j=1

ω
(ℓ)
i

(
z
(ℓ)
j |T(n),Σw

) 1

Ii
−

∫

T

N (z|h (Ti, Sℓ ) ,Σw) dz

)
= 0 (95)

Thus

I
(n+1)
i =

s∑

ℓ=1

mℓ∑

j=1

ω
(ℓ)
i

(
z
(ℓ)
j |T(n),Σw

)

s∑

ℓ=1

∫

T

N (z|h (Ti, Sℓ ) ,Σw) dz

(96)

6.2 AIC-Based Model Selection

The previous subsection provides an EM approach to estimatethe target locations given the

number of targets. Presented in this approach is an information theoretic approach to select the

appropriate model, i.e., the number of targets. Similar to the single-sensor scenario, here we use

the AIC to select the appropriate number of targets.

As seen in the E-step, the probabilityp
(
ψ(1), . . . ,ψ(s) |T

)
can be written as

p
(
ψ(1), . . . ,ψ(s) |T

)
=

s∏

ℓ=1

[
exp

(
−

∫

T

ν(ℓ)(z |T) dz

) mℓ∏

j=1

ν(ℓ)
(
z
(ℓ)
j |T

)]
(97)

Since
∫
T ν

(ℓ)(z |T) dz = N̂ , whereN̂ is a candidate for the number of targets, the likelihood

L

(
T̂, N̂ |ψ(1), . . . ,ψ(s)

)
can be written as

L

(
T̂, N̂ |ψ(1), . . . ,ψ(s)

)
=

s∏

ℓ=1

[
exp

(
−N̂

) mℓ∏

j=1

ν(ℓ)
(
z
(ℓ)
j | T̂

)]
(98)

Now following the information given in subsection 3.2.1, the AIC can be calculated as

AIC = −2 logL
(
T̂, N̂ |ψ(1), . . . ,ψ(s)

)
+ 6N̂. (99)

Therefore, the proposed approach would select several different candidates for̂N and solve the

corresponding localization problem using the EM algorithm. Afterwards, the AIC associated

with each model is calculated and the model corresponding tothe lowest AIC is selected as the

estimated model.
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7. Multi-Sensor Example

Consider a scenario, where there are four targets (N = 4) located at

T =

([
298

−5

]
,

[
250

7

]
,

[
267

−17

]
,

[
310

18

])
,

and three sensors located at
[
Sx1

Sy1

]
=

[
10

−0.5

]
,

[
Sx2

Sy2

]
=

[
−15

−2.5

]
&

[
Sx3

Sy3

]
=

[
−15

2

]
.

Following the setup presented in section 5., the measurement intensity corresponding to theℓ−th

sensor is given as

ν(ℓ) (z |T) =

N∑

i=1

pD(Ti)N (z|h (Ti, Sℓ ) ,Σw) + ν
(ℓ)
cl (z).

For simplifying the problem here we assume,ν
(ℓ)
cl (z) is the same for allℓ ∈ {1, 2, 3} and

pD(Ti) = Ii. The known measurement covariance matrix isΣw =

[
9 0

0 5× 10−3

]
, i.e., the range

standard deviation amounts to3 m and the bearing standard deviation amounts to4o. TheIi’s are

given as

I1:4 = {0.5525, 1.8399, 1.2119, 0.3957}

and the clutter intensity is given as

νcl(z) = 0.0122N

(
z |h

([
281.25

0.75

])
,

[
900 0

0 0.4874

])
.

Thus the intensity corresponding to the PPP consists of all measurements among the three sensors

is given as

γ(z) =

3∑

ℓ=1

(
4∑

i=1

Ii N (z|h (Ti, Sℓ ) ,Σw) + ν
(ℓ)
cl (z)

)
.

In order to evaluate the performance of the algorithm, 200 MCruns were conducted. For each

run, the number of measurements for each sensor is determined by sampling from the Poisson
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distribution

pM(m) ≈
(4)m

m!
exp {−4} .

For theℓ-th sensor, themℓ measurements are obtained from the mixture pdf

1

4.0122

[
4∑

i=1

IiN (z|h (Ti, Sℓ ) ,Σw) + 0.0122N

(
z |h

([
281.25

0.75

])
,

[
900 0

0 0.4874

])]

with mixing probabilities{0.1377, 0.4586, 0.3021, 0.0986, 0.0030}. After obtaining the

measurements for all three sensors, the proposed EM algorithm is executed for each model using

the appropriate initial condition selected from the following set:

{[
320

20

]
,

[
250

0

]
,

[
295

0

]
,

[
265

−10

]
,

[
275

5

]
,

[
300

15

]}
.

Here we consider the following five models:

N1 = 2, N2 = 3, N3 = 4, N4 = 5, andN5 = 6.

For each model the AIC is then calculated according to the information given in subsection 6.2

and the model corresponding to the minimum AIC is selected asthe correct model.

Here we use the OSPA metric to assess the performance and accuracy of the proposed localization

algorithm (30). To be specific, we use the OSPA metric of order 1 with cut-offvalue 100.

Given in figure 4 is the histogram obtained from the MC runs forthe number of measurements for

all three sensors. Note that the histogram for the number of measurements resembles that of a

Poisson pdf with a rate of four.
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(a) Sensor 1
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(c) Sensor 3

Figure 4. Histogram for number of measurements.

Figure 5a contains the histogram obtained from the MC runs for the number of estimated targets.

The histogram for the estimated number of targets clearly indicates that there are four targets.

Figure 5b contains the OSPA metric obtained for each MC runs.Note that the OSPA metric

around the 100 mark indicates the MC runs with a cardinality error of one while the OSPA metric

around the 200 mark indicates the MC runs with a cardinality error of two. Note that most of the

metrics are well below 50 indicating no cardinality error and accurate localization.
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Figure 5. Estimated number of targets and OSPA metric for each MC runs.

Given in figure 6 is the localization results obtained for oneof the MC trials. For the numerical

results presented in figure 6,m1 = 6,m2 = 2,m3 = 5 and the measurement are




286.5969 6.2309

240.8335 0.0081

259.9712 6.2273

302.0675 0.0577

256.8199 6.2335

288.3582 6.2747




,

[
331.4559 0.0351

310.6632 6.2480

]
,




313.1043 0.0071

267.7569 6.2744

283.0506 6.1852

321.8741 0.0963

262.4796 0.0491



.
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(a) Sensor 1
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(b) Sensor 2
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(c) Sensor 3

Figure 6. Individual sensor measurements and EM solutions.

For all MC runs, five different models are selected and the correct model is selected as the one

with lowest AIC score. Thus the parameter estimates areN̂ = 4 and

T̂ =

([
297.1037

−7.3038

]
,

[
311.0966

20.7981

]
,

[
267.6813

−17.5251

]
,

[
250.3221

5.1730

])
.

The fused solution along with the individual measurements are given in figure 7, where the fused

solutions are displayed as green stars. As shown in figure 6, sensor one yields six measurements

(indicated as blue diamonds), sensor two yields two measurements (indicated as cyan squares),
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and sensor three yields four measurements (indicated as magenta triangles).
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Figure 7. Multi-sensor fused solution.

8. Experimental Results

This section presents the implementation of the proposed algorithm for multi-shooter localization

using a network of acoustic GDSs. The individual GDSs are composed of a passive array of

microphones that is able to localize a gunfire event by measuring the direction of arrival for both

the acoustic wave generated by the muzzle blast and the shockwave generated by the supersonic

bullet (2–5). After detecting a gunfire, the individual sensors report their solution, usually in the

form of range and bearing to the shooter locations relative to the sensor, along with their

orientation and GPS positions to a central node over a communication network. At the central

node, the individual sensor solutions are fused along with the GPS positions to yield a highly

accurate, geo-rectified solution. More details on shooter localization using a network of acoustic

GDSs can be found in references (31–37).

Experiments were conducted for the quad symmetric sensor formation given in figure 8 using a

sensor network composed of nine sensors. The sensor patternspreads over 25 m front to back.

In figure 8, the shooter position is marked by a red human figure, and the shot line is marked by a

translucent red line. The GPS locations of the three shooterpositions are given in table 3.
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Figure 8. Quad symmetric sensor formation.

Table 3. Shooter Locations.

Shooter Position GPS - East (m) GPS - North (m)

Shooter Position 1 283309 4709539

Shooter Position 2 283270 4709567

Shooter Position 3 283337 4709632

The sensor locations and headings correspond to the quad symmetric formation are given in

table 4.

Table 4. Sensor locations and heading for quad symmetric
formation.

Sensor GPS - East (m) GPS - North (m) Heading (deg)

SW1 283130 4709427 40

SW2 283129 4709434 39

SW3 283165 4709401 31

UGS1 283133 4709431 39

UGS2 283169 4709398 30

UGS3 283168 4709405 31

VM1 283127 4709431 40

VM2 283172 4709402 30

VM3 283177 4709395 29

Here, 30 shots were fired for each shooter position. For each run, the number of measurements
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reported by each sensor is modeled as the Poisson distribution

pM(m) ≈
(3)m

m!
exp {−3} .

Following the formulation presented in section 5., themℓ measurements obtained for theℓ-th

sensor are modeled as i.i.d. samples from the mixture pdf

1

3.0122

[
3∑

i=1

Ii N (z|h (Ti, Sℓ ) ,Σw) + 0.0122N

(
z |h

([
4709579.33

283305.33

])
,

[
1000 0

0 1.0

])]

with mixing probabilities{0.4378, 0.4853, 0.0728, 0.0041}. The covariance associated with

individual measurements are obtained from the confidence weights provided by the sensors (32).

After obtaining the measurements for all nine sensors, the proposed EM algorithm is executed for

each model using the appropriate initial condition selected. Here we consider the following four

models:

N1 = 2, N2 = 3, N3 = 4, andN4 = 5.

For each model the AIC is then calculated according to the information given in subsection 6.2

and the model corresponding to the minimum AIC is selected asthe correct model.

Similar to the previous results, here also we used the OSPA metric of order 1 with cut-off value

100 to assess the performance and accuracy of the proposed localization algorithm (30).

Given in figure 9 is the histogram obtained from the MC runs forthe number of measurements for

all nine sensors. Note that the histogram for the number of measurements resembles that of a

Poisson pdf with a rate of three.
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Figure 9. Histogram for number of measurements for each experimental runs.
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Figure 10 contains the histogram obtained from the 30 experimental runs for the number of

estimated targets. The histogram for the estimated number of targets clearly indicates that there

are three targets.
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Figure 10. Estimated number of targets.

Figure 11 contains the OSPA metric obtained for each experimental runs. Note that most of the

metrics are well below 20 indicating no cardinality error and very accurate localization.
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Figure 11. OSPA metric for experimental runs.

Given in figure 12 is the localization results obtained for one of the experimental trials. For the

numerical results presented in figure 6,m1 = 2,m2 = 6,m3 = 1,m4 = 4,m5 = 4,m6 = 2,

m7 = 4,m8 = 3, andm9 = 3. In figure 12, the measurements obtained for each sensors are
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denoted as blue diamonds, the true shooter locations are denoted as red stars, the sensor location

is denoted as yellow circles, and the estimated shooter locations are represented as green stars.
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Figure 12. Experimental results for individual sensor measurements and EM solutions.

The fused solution along with the individual measurements are given in figure 13, where the fused

solutions are displayed as green stars. As shown in figure 13,the fused solution is more accurate

compared to the individual measurements.
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Figure 13. Experimental result for multi-sensor fusion.

9. Conclusion

This report presents the finite point process approach to themulti-target localization problem for

the single-sensor as well as multi-sensor scenario. Here itis assumed that target identification is

not possible, and therefore, no association between the measurements and targets are available.

Furthermore, the number of targets in the surveillance region is unknown, and due to the limited

range of the sensors, missed detections can occur and the presence of clutter can induce false

alarms. Here we propose an EM algorithm to estimate the target locations while the information

criterion, AIC, is used to estimate the number of targets. The preliminary implementation of the

proposed algorithm on synthetic data produced accurate results. Implementation of the proposed

algorithm on experimental data obtained for the multi-shooter localization problem further

confirms the numerical results. Here we use the optimal subpattern assignment metric of order 1

with a cut-off value of 100 to assess the performance of the localization algorithm. As the results

given in sections 7. and 8. indicate, the finite point processapproach is able to accurately estimate

the number of targets and their locations in the presence of clutter and missed detection. Future

work will include decreasing the sensitivity of the proposed algorithm to the initial guess with the

use of multiple-thread search and deterministic annealingEM algorithm (38). The current

scheme can also benefit from a systematic approach for selecting potential target models.

38



10. References

1. George, J.; Kaplan, L. Shooter Localization using a Wireless Sensor Network of

Soldier-Worn Gunfire Detection Systems.Journal of Advances in Information Fusion2013,

8 (1), 15-32.

2. Makinen, T.; Pertila, P. Shooter localization and bullettrajectory, caliber, and speed

estimation based on detected firing sounds.Applied Acoustics2010, 71 (10), 902-913.

3. Kaplan, L.; Damarla, T.; Pham, T. QoI for passive acousticgunfire localization. In5th

IEEE International Conference on Mobile Ad Hoc and Sensor Systems, MASS, Atlanta GA,

Sep.-Oct. 2008.

4. Duckworth, G. L.; Gilbert, D. C.; Barger, J. E. Acoustic counter-sniper system. In

Proceedings of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference;

Vol. 2938, Boston, MA, Nov. 1997.

5. Bédard, J.; Paré, S. Ferret: A small arms’ fire detection system: Localization concepts. In

Proceedings of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference;

Vol. 5071, Orlando, FL, Apr. 2003.

6. Blackman, S. Multiple hypothesis tracking for multiple target tracking. Aerospace and

Electronic Systems Magazine, IEEE2004, 19 (1), 5-18.

7. Vermaak, J.; Godsill, S.; Perez, P. Monte Carlo filtering for multi target tracking and data

association. Aerospace and Electronic Systems, IEEE Transactions on2005, 41 (1),

309-332.

8. Bar-Shalom, Y.; Tse, E. Tracking in a cluttered environment with probabilistic data

association. Automatica1975, 11 (5), 451-460.

9. T. Fortmann, Y. B.-S.; Scheffe, M. Sonar tracking of multiple targets using joint

probabilistic data association.IEEE J. Ocean. Eng.1983, 8 (3), 173-183.

10. Reid, D. An algorithm for tracking multiple targets.Automatic Control, IEEE Transactions

on 1979, 24 (6), 843 - 854.

11. Bar-Shalom, Y.; Fortmann, T.Tracking and Data Association; Academic Press: New

York, 1988.

39



12. Perlovsky, L. I. Cramer-Rao bound for tracking in clutter and tracking multiple objects.

Pattern Recognition Letters1997, 18 (3), 283 - 288.

13. Garcia-Fernandez, A.; Morelande, M.; Grajal, J. Multitarget Simultaneous Localization and

Mapping of a Sensor Network.Signal Processing, IEEE Transactions on2011, 59 (10),

4544 - 4558.

14. Montemerlo, M.; Thrun, S.; Koller, D.; Wegbreit, B. FastSLAM: a factored solution to the

simultaneous localization and mapping problem. InEighteenth national conference on

Artificial intelligence, American Association for Artificial Intelligence: Menlo Park, CA,

USA, 2002.

15. Jensfelt, P.; Kristensen, S. Active global localization for a mobile robot using multiple

hypothesis tracking.Robotics and Automation, IEEE Transactions on2001, 17 (5), 748 -

760.

16. Mahler, R. Multitarget Bayes filtering via first-order multitarget moments.Aerospace and

Electronic Systems, IEEE Transactions on2003, 39 (4), 1152-1178.

17. Lin, L.; Bar-Shalom, Y.; Kirubarajan, T. Track labelingand PHD filter for multitarget

tracking. Aerospace and Electronic Systems, IEEE Transactions on2006, 42 (3), 778-795.

18. Vo, B.-N.; Singh, S.; Doucet, A. Sequential Monte Carlo methods for multitarget filtering

with random finite sets.Aerospace and Electronic Systems, IEEE Transactions on2005,

41 (4), 1224-1245.

19. Vo, B.-N.; Ma, W.-K. The Gaussian Mixture Probability Hypothesis Density Filter.Signal

Processing, IEEE Transactions on2006, 54 (11), 4091-4104.

20. Clark, D.; Bell, J. Convergence results for the particlePHD filter. Signal Processing, IEEE

Transactions on2006, 54 (7), 2652-2661.

21. Clark, D.; Vo, B.-N. Convergence Analysis of the Gaussian Mixture PHD Filter. Signal

Processing, IEEE Transactions on2007, 55 (4), 1204-1212.

22. Vo, B.-N.; Singh, S.; Ma, W.-K. Tracking multiple speakers using random sets. In

Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP ’04). IEEE

International Conference on; Vol. 2, 2004.

23. Ma, W.-K.; Vo, B.-N.; Singh, S.; Baddeley, A. Tracking anunknown time-varying number

of speakers using TDOA measurements: a random finite set approach. Signal Processing,

IEEE Transactions on2006, 54 (9), 3291-3304.

40



24. Xiaodong, L.; Linhu, Z.; Zhengxin, L. Probability hypothesis densities for multi-sensor,

multi-target tracking with application to acoustic sensors array. InAdvanced Computer

Control (ICACC), 2010 2nd International Conference on; Vol. 5, 2010.

25. Deming, R. W.; Perlovsky, L. I. Concurrent multi-targetlocalization, data association, and

navigation for a swarm of flying sensors.Information Fusion2007, 8 (3), 316 - 330.

26. Carevic, D. Automatic Estimation of Multiple Target Positions and Velocities Using Passive

TDOA Measurements of Transients.Signal Processing, IEEE Transactions on2007, 55 (2),

424-436.

27. Carevic, D. Multitarget Detection and Estimation Basedon Passive Multilateral TDOAs of

Transient Signals.Signal Processing, IEEE Transactions on2008, 56 (1), 418-424.

28. Streit, R. Poisson Point Processes: Imaging, Tracking,and Sensing. In , Springer: New

York, NY, 2010; Chapter 2-3, pp 11–80.

29. Akaike, H. A new look at the statistical model identification. Automatic Control, IEEE

Transactions on1974, 19 (6), 716 - 723.

30. Schuhmacher, D.; Vo, B.-T.; Vo, B.-N. A Consistent Metric for Performance Evaluation of

Multi-Object Filters. Signal Processing, IEEE Transactions on2008, 56 (8), 3447 - 3457.

31. George, J.; Kaplan, L. Shooter localization using soldier-worn gunfire detection systems. In

Proceedings of the 12th International Conference on Information Fusion

(FUSION), Chicago, IL, July 2011.

32. George, J.; Kaplan, L. M.; Kozick, R.; Deligeorges, S. Multi-Sensor Data Fusion using

Soldier-Worn Gunfire Detection Systems. InProc. MSS Battlespace Acoustic and Magnetic

Sensors (BAMS), Washington, DC, Oct. 2011.

33. Damarla, T.; Kaplan, L.; Whipps, G. Sniper LocalizationUsing Acoustic Asynchronous

Sensors. Sensors Journal, IEEE2010, 10 (9), 1469-1478.

34. Lindgren, D.; Wilsson, O.; Gustafsson, F.; Habberstad,H. Shooter Localization in Wireless

Microphone Networks.EURASIP Journal on Advances in Signal Processing2010,

2010 (6), 1-25.

35. Lindgren, D.; Wilsson, O.; Gustafsson, F.; Habberstad,H. Shooter localization in wireless

sensor networks. InProceedings of the 12th International Conference on Information Fusion

(FUSION), Seattle, WA, July 2009.

41



36. Volgyesi, P.; Balogh, G.; Nadas, A.; Nash, C. B.; Ledeczi, A. Shooter localization and

weapon classification with soldier-wearable networked sensors. InProceedings of the 5th

international conference on Mobile systems, applicationsand services, New York, NY, June

2007.

37. Ledeczi, A.; Volgyesi, P.; Maroti, M.; Simon, G.; Balogh, G.; Nadas, A.; Kusy, B.;

Dora, S.; Pap, G. Multiple simultaneous acoustic source localization in urban terrain. In

Fourth International Symposium on Information Processingin Sensor Networks, IPSN, Los

Angeles, CA, Apr. 2005.

38. Takada, M.; Nakano, R. Multi-thread search with deterministic annealing EM algorithm. In

Neural Networks, 2002. IJCNN ’02. Proceedings of the 2002 International Joint Conference

on; Vol. 1, 2002.

42



INTENTIONALLY LEFT BLANK .

43



NO. OF
COPIES ORGANIZATION

1
(PDF)

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

2
(PDF)

DIRECTOR
US ARMY RESEARCH LAB
RDRL CIO LL
IMAL HRA MAIL & RECORDS MGMT

1
(PDF)

GOVT PRINTG OFC
A MALHOTRA

5
(PDF)

DIRECTOR
US ARMY RESEARCH LAB
RDRL SES A

JEMIN GEORGE
LANCE M. KAPLAN
TIEN PHAM
NASSY SROUR
GENE T. WHIPPS

44


